First Exam MTH 221 , summer 2011

Ayman Badawi

QUESTION 1. Each = $\mathbf{2 . 5}$ points, Circle the correct answer

(i) If A is a 3×3 matrix and $\operatorname{det}(\mathrm{A})=2$, then $\operatorname{det}(3 \mathrm{~A})=$
a. 6
b. $\frac{3}{2}$
c. 24
d. 54
e. None of the above
(ii) If A is a 3×3 matrix such that $\operatorname{det}(A)=-0.5$, then the system $A X=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
a. has infinitely many solution and $x_{1}=x_{2}=x_{3}=0$ is a solution to the system.
b. is possible to be inconsistent
c. $x_{1}=x_{2}=x_{3}=-0.5$ is a solution to the system
d. $x_{1}=x_{2}=x_{3}=0$ is the only solution to the system
(iii) If A, B are 4×4 matrices such that $\operatorname{det}(2 A)=\operatorname{det}(B)=8$. Then $\operatorname{det}\left(A B A^{T}\right)=$
a. 512
b. 128
c. 32
d. 2
e. none of the above
(iv) Let A be a 5×5 matrix such that the third column and the fifth column of A are identical. Let B be the third column of A. Then one of the following statement is correct:
a. $x_{1}=x_{2}=x_{4}=0, x_{3}=x_{5}=1$ is a solution to the system $A X=B$.
b. $x_{1}=x_{2}=x_{4}=0, x_{3}=x_{5}=0.5$ is the only solution to the system $A X=B$.
c. It is possible that the system $A X=B$ is inconsistent
d. $x_{1}=x_{2}=x_{4}=0, x_{3}=\pi, x_{5}=1-\pi$ is a solution to the system.
(v) Let A be a 2×2 matrix and $B=\left[\begin{array}{cc}a_{1} & a_{2} \\ a_{1} & 0\end{array}\right]$. Given $A B=\left[\begin{array}{cc}3 a_{1} & 2 a_{2} \\ 0 & -a_{2}\end{array}\right]$. Then $A=$
a. $\left[\begin{array}{cc}3 & 0 \\ -1 & 0\end{array}\right]$.
b. $\left[\begin{array}{cc}3 & 0 \\ -1 & 1\end{array}\right]$.
c. $\left[\begin{array}{cc}1 & 2 \\ -1 & 1\end{array}\right]$.
d. $\left[\begin{array}{cc}2 & 1 \\ -1 & 1\end{array}\right]$.
(vi) let $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ -1 & 0 & -1 \\ -1 & -1 & 0\end{array}\right]$. Then A^{-1}
a. $\left[\begin{array}{ccc}-1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$
b. $\left[\begin{array}{ccc}1 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
c. $\left[\begin{array}{ccc}0 & -1 & -1 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
d. None of the above
(vii) Let A as above. Then a solution to $A^{T} X=\left[\begin{array}{c}-1 \\ -1 \\ 0\end{array}\right]$ is
a. $x_{1}=x_{2}=0, x_{3}=1$
b. $x_{1}=1, x_{2}=-1, x_{3}=0$
c. the system has infinitely many solution and $x_{1}=-1, x_{2}=-1, x_{3}=0$ is a solution
d. none of the above
(viii) The values of k which make the system $\left[\begin{array}{ccc}1 & 1 & 1 \\ -1 & -1 & (k-1) \\ -2 & -2 & k\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}k \\ 1-k \\ -k\end{array}\right]$ consistent are
a. $\mathrm{k}=-1$ and $\mathrm{k}=2$
b. $k \neq 0$ and $k \neq-2$
c. $k \neq 1$ and $k \neq 2$
d. none of the above.
(ix) The values of k which make the system $\left[\begin{array}{ccc}2 & 0 & 1 \\ -2 & 1 & 1 \\ -2 & -2 & k\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}-4 \\ 3 \\ 4\end{array}\right]$ inconsistent are
a. $k=-5$
b. $k=-1$
c. $k=-3$
d. None of the above
(x) The values of k and a that make the system $\left[\begin{array}{ccc}2 & 2 & 8 \\ -2 & -1 & 1 \\ -2 & -2 & k\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}a \\ 3 \\ 4\end{array}\right]$ inconsistent are
a. $k=-8$ and $a \neq-4$
b. $k=-8$ and $a=-4$
c. $k=-4$ and $a \in R$
d. none of the above
(xi) Let $A=\left[\begin{array}{cc}-5 & -2 \\ 6 & 2\end{array}\right]$. Then $A^{-1}=$
a. $\left[\begin{array}{cc}1 & 1 \\ -3 & -2.5\end{array}\right]$.
b. $\frac{-1}{22}\left[\begin{array}{cc}2 & 2 \\ -6 & -5\end{array}\right]$.
c. $\frac{-1}{22}\left[\begin{array}{ll}2 & -6 \\ 2 & -5\end{array}\right]$.
d. none of the above
(xii) Let A be a 3×3 matrix and C be the completely reduced form of A such that
$A \overrightarrow{R_{1} \leftrightarrow R_{2}} \quad A_{1} \quad \overrightarrow{2 R_{1}+R_{3} \rightarrow R_{3}} \quad A_{2} \quad \overrightarrow{2 R_{3}} C=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$. Then the solution to the system $A X=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$
a. $x_{1}=1, x_{2}=2, x_{3}=4$
b. $\quad x_{1}=2, x_{2}=1, x_{3}=4$
c. $\quad x_{1}=1, x_{2}=0.5, x_{3}=0$
d. None of the above
(xiii) Consider question (xii). A^{-1} is
a. $\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 4 & 2\end{array}\right]$
b. $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 4 & 2\end{array}\right]$
c. $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]$
d. None of the previous is correct
(xiv) Consider question (xii). $\operatorname{det}(A)$ is
a. 2
b. 0.5
c. -2
d. None of the previous is correct.
(xv) Consider question (xii). Let E be an elementary matrix such that $E A_{2}=A_{1}$. Then E is
a. $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1\end{array}\right]$
b. $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0.5\end{array}\right]$
c. $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1\end{array}\right]$
d. $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]$
(xvi) Let $A=\left[\begin{array}{cccc}2 & 1 & -1 & 2 \\ -2 & 1 & 4 & 6 \\ -4 & -2 & 3 & 4 \\ -2 & -1 & 2 & 1\end{array}\right]$. Then $\operatorname{det}(A)=$
a. 20
b. 12
c. -20
d. None of the previous is correct

QUESTION 2. $($ Each $=\mathbf{2}$ points) Answer the following as true or false: NO WORKING NEED BE SHOWN.
(i) If A is a 3×3 matrix and the system $A X=\left[\begin{array}{l}2 \\ 5 \\ 8\end{array}\right]$ has infinitely many solutions, then $\operatorname{det}(A)=0$.
(ii) If A is a 5×5 matrix and the system $A X=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]$ has only the trivial solution, then $\operatorname{det}(A) \neq 0$.
(iii) If A is a 4×5 matrix and the system $A X=\left[\begin{array}{l}1 \\ 0 \\ 3 \\ 5\end{array}\right]$ is consistent, then it has infinitely many solutions.
(iv) If A is a 3×3 matrix and A is row-equivalent to B, then there exists an invertible matrix F such that $F A=B$.
(v) If A, B are 6×6 matrices and $A B \neq B A$, then it is possible that $\operatorname{det}(A B) \neq \operatorname{det}(B A)$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

